The maximum percentage errors in the measurement of mass (M), radius (R) and angular velocity $(\omega)$ of a ring are $2 \%, 1 \%$ and $1 \%$ respectively, then find the maximum percenta? error in the measurement of its rotational kinetic energy $\left(K=\frac{1}{2} I \omega^{2}\right)$
$3$
$6$
$4$
$1$
A student performs an experiment to determine the Young's modulus of a wire, exactly $2 \mathrm{~m}$ long, by Searle's method. In a particular reading, the student measures the extension in the length of the wire to be $0.8 \mathrm{~mm}$ with an uncertainty of $\pm 0.05 \mathrm{~mm}$ at a load of exactly $1.0 \mathrm{~kg}$. The student also measures the diameter of the wire to be $0.4 \mathrm{~mm}$ with an uncertainty of $\pm 0.01 \mathrm{~mm}$. Take $g=9.8 \mathrm{~m} / \mathrm{s}^2$ (exact). The Young's modulus obtained from the reading is
We can reduce random errors by
A student performs an experiment for determination of $g \left(=\frac{4 \pi^{2} l }{ T ^{2}}\right), \ell =1 m$ and he commits an error of $\Delta \ell$. For $T$ he takes the time of $n$ oscillations with the stop watch of least count $\Delta T$ and he commits a human error of $0.1 s$ For which of the following data, the measurement of $g$ will be most accurate?
If the length of rod $A$ is $3.25 \pm 0.01 \,cm$ and that of $B$ is $4.19 \pm 0.01\, cm $ then the rod $B$ is longer than rod $A$ by
In an experiment of determine the Young's modulus of wire of a length exactly $1\; m$, the extension in the length of the wire is measured as $0.4\,mm$ with an uncertainty of $\pm 0.02\,mm$ when a load of $1\,kg$ is applied. The diameter of the wire is measured as $0.4\,mm$ with an uncertainty of $\pm 0.01\,mm$. The error in the measurement of Young's modulus $(\Delta Y)$ is found to be $x \times 10^{10}\,Nm ^{-2}$. The value of $x$ is
$\left[\right.$ Take $\left.g =10\,m / s ^{2}\right]$