इकाई मापांकों की दो सम्मिश्र संख्याओं का गुणन होगा
इकाई मापांक
इकाई मापांक सेे कम
इकाई मापांक से अधिक
इनमें से कोई नहीं
यदि $\sqrt 3 + i = (a + ib)(c + id)$, तब ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ का मान है
यदि $|{z_1}|\, = \,|{z_2}|$ तथा कोणांक $\,{z_1} + \,\,$कोणांक${z_2} = 0$, तो
सम्मिश्र संख्याओं ${z_1}$और ${z_2}$के लिये सत्य कथन
निम्नलिखित सम्मिश्र संख्याओं का मापांक एवं कोणांक ज्ञात कीजिए।
$\frac{1+i}{1-i}$
यदि $z$ व $\omega $ दो अशून्य सम्मिश्र संख्याएँ इस प्रकार हों, कि $|z\omega |\, = 1$ तथा $arg(z) - arg(\omega ) = \frac{\pi }{2}$ हो, तब $\bar z\omega $ का मान है