If $1 + \cos \alpha + {\cos ^2}\alpha + .......\,\infty = 2 - \sqrt {2,} $ then $\alpha ,$ $(0 < \alpha < \pi )$ is
$\pi /8$
$\pi /6$
$\pi /4$
$3\pi /4$
Let for $n =1,2, \ldots \ldots, 50, S _{ a }$ be the sum of the infinite geometric progression whose first term is $n ^{2}$ and whose common ratio is $\frac{1}{(n+1)^{2}}$. Then the value of $\frac{1}{26}+\sum\limits_{n=1}^{50}\left(S_{n}+\frac{2}{n+1}-n-1\right)$ is equal to
Suppose the sides of a triangle form a geometric progression with common ratio $r$. Then, $r$ lies in the interval
If $a, b, c$ and $d$ are in $G.P.$ show that:
$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$
Suppose that the sides $a,b, c$ of a triangle $A B C$ satisfy $b^2=a c$. Then the set of all possible values of $\frac{\sin A \cot C+\cos A}{\sin B \cot C+\cos B}$ is
If $n$ geometric means be inserted between $a$ and $b$ then the ${n^{th}}$ geometric mean will be