एक कण का स्थिति-सदिश समय के साथ निम्न सूत्र से बदलता है, $\overrightarrow{ r }( t )=15 t ^{2} \hat{ i }+\left(4-20 t ^{2}\right) \hat{ j } t =1$ पर कण के त्वरण का परिमाण होगा ?
समय $t =0$ पर एक कण बिन्दु $(2.0 \hat{ i }+4.0 \hat{ j }) \,m$ से, आरम्भिक वेग $(5.0 \hat{ i }+4.0 \hat{ j }) \,ms ^{-1}$ से, गतिशील है। यह एक स्थिर त्वरण $(4.0 \hat{ i }+4.0 \hat{ j }) \,ms ^{-2}$ उत्पन्न करने वाले एक स्थिर बल के प्रभाव में चलता है। समय $2 \,s$ पर कण की मूल बिन्दु से दूरी क्या होगी ?
$xy$ तल में गति करते हुए कण की $t$ समय पर स्थिति निम्नलिखित सम्बन्धों से व्यक्त की जाती है $x = (3{t^2} - 6t)$ मीटर, $y = ({t^2} - 2t)$ मीटर। गतिशील कण के लिए निम्नलिखित में से सही कथन का चयन कीजिये