The period of oscillation of a simple pendulum is given by $T = 2\pi \sqrt {\frac{l}{g}} $ where $l$ is about $100 \,cm$ and is known to have $1\,mm$ accuracy. The period is about $2\,s$. The time of $100$ oscillations is measured by a stop watch of least count $0.1\, s$. The percentage error in $g$ is ......... $\%$

  • A

    $0.1$

  • B

    $1$

  • C

    $0.2$

  • D

    $0.8$

Similar Questions

The relative error in resistivity of a material where

resistance $= 1.05 \pm 0.01\, \Omega$

diameter $= 0.60 \pm 0.01\, mm$

length $= 75.3 \pm 0.1 \,cm$ is

Students $I$, $II$ and $III$ perform an experiment for measuring the acceleration due to gravity $(g)$ using a simple pendulum.

They use different lengths of the pendulum and /or record time for different number of oscillations. The observations are shown in the table.

Least count for length $=0.1 \mathrm{~cm}$

Least count for time $=0.1 \mathrm{~s}$

Student Length of the pendulum $(cm)$ Number of oscillations $(n)$ Total time for $(n)$ oscillations $(s)$ Time period $(s)$
$I.$ $64.0$ $8$ $128.0$ $16.0$
$II.$ $64.0$ $4$ $64.0$ $16.0$
$III.$ $20.0$ $4$ $36.0$ $9.0$

If $\mathrm{E}_{\mathrm{I}}, \mathrm{E}_{\text {II }}$ and $\mathrm{E}_{\text {III }}$ are the percentage errors in g, i.e., $\left(\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100\right)$ for students $\mathrm{I}, \mathrm{II}$ and III, respectively,

  • [IIT 2008]

The relative error in the measurement of the side of a cube is $0.027$. The relative error in the measurement of its volume is .......... 

In an experiment of simple pendulum time period measured was $50\,sec$ for $25$ vibrations when the length of the simple pendulum was taken $100\,cm$ . If the least count of stop watch is $0.1\,sec$ . and that of meter scale is $0.1\,cm$ then maximum possible error in value of $g$ is .......... $\%$

The period of oscillation of a simple pendulum is $T=2\pi \sqrt {\frac{l}{g}} $. Measured value of $L$ is $20.0\; cm$ known to $1\; mm$ accuracy and time for $100$ oscillations of the pendulum is found to be $90\ s$ using a wrist watch of $1\; s$ resolution. The accuracy in the determination of $g$ is   ........ $\%$

  • [JEE MAIN 2015]