Students $I$, $II$ and $III$ perform an experiment for measuring the acceleration due to gravity $(g)$ using a simple pendulum.
They use different lengths of the pendulum and /or record time for different number of oscillations. The observations are shown in the table.
Least count for length $=0.1 \mathrm{~cm}$
Least count for time $=0.1 \mathrm{~s}$
Student | Length of the pendulum $(cm)$ | Number of oscillations $(n)$ | Total time for $(n)$ oscillations $(s)$ | Time period $(s)$ |
$I.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$II.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$III.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
If $\mathrm{E}_{\mathrm{I}}, \mathrm{E}_{\text {II }}$ and $\mathrm{E}_{\text {III }}$ are the percentage errors in g, i.e., $\left(\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100\right)$ for students $\mathrm{I}, \mathrm{II}$ and III, respectively,
$E_I=0$
$E_I$ is minimum
$\mathrm{E}_{\mathrm{I}}=\mathrm{E}_{\mathrm{II}}$
$\mathrm{E}_{\text {II }}$ is maximum
The unit of percentage error is
The amount of heat produced in an electric circuit depends upon the current $(I),$ resistance $(R)$ and time $(t).$ If the error made in the measurements of the above quantities are $2\%, 1\%$ and $1\%$ respectively then the maximum possible error in the total heat produced will be ........... $\%$
The measured value of the length of a simple pendulum is $20 \mathrm{~cm}$ with $2 \mathrm{~mm}$ accuracy. The time for $50$ oscillations was measured to be $40$ seconds with $1$ second resolution. From these measurements, the accuracy in the measurement of acceleration due to gravity is $\mathrm{N} \%$. The value of $\mathrm{N}$ is:
Explain least count and least count error. Write a note on least count error.
The least count of stop watch is $\frac{1}{5}\,second$. The time of $20$ oscillations of pendulum is measured to be $25\,seconds$. Then percentage error in the measurement of time will be.......... $\%$