The percentage increase in the speed of transverse waves produced in a stretched string if the tension is increased by $4\, \%$, will be ......... $\%$
$1$
$2$
$0$
$4$
A copper wire is held at the two ends by rigid supports. At $50^{\circ} C$ the wire is just taut, with negligible tension. If $Y=1.2 \times 10^{11} \,N / m ^2, \alpha=1.6 \times 10^{-5} /{ }^{\circ} C$ and $\rho=9.2 \times 10^3 \,kg / m ^3$, then the speed of transverse waves in this wire at $30^{\circ} C$ is .......... $m / s$
steel wire $0.72\; m$ long has a mass of $5.0 \times 10^{-3}\; kg .$ If the wire is under a tension of $60\; N ,$ what is the speed (in $m/s$) of transverse waves on the wire?
Mechanical waves on the surface of a liquid are
A string of mass $2.50 \;kg$ is under a tension of $200\; N$. The length of the stretched string is $20.0 \;m$. If the transverse jerk is struck at one end of the string, how long (in $sec$) does the disturbance take to reach the other end?
Which of the following statements is incorrect during propagation of a plane progressive mechanical wave ?