A copper wire is held at the two ends by rigid supports. At $50^{\circ} C$ the wire is just taut, with negligible tension. If $Y=1.2 \times 10^{11} \,N / m ^2, \alpha=1.6 \times 10^{-5} /{ }^{\circ} C$ and $\rho=9.2 \times 10^3 \,kg / m ^3$, then the speed of transverse waves in this wire at $30^{\circ} C$ is .......... $m / s$
$64.6$
$16.2$
$23.2$
$32.2$
Obtain the equation of speed of transverse wave on tensed (stretched) string.
The speed of a transverse wave passing through a string of length $50 \;cm$ and mass $10\,g$ is $60\,ms ^{-1}$. The area of cross-section of the wire is $2.0\,mm ^{2}$ and its Young's modulus is $1.2 \times 10^{11}\,Nm ^{-2}$. The extension of the wire over its natural length due to its tension will be $x \times 10^{-5}\; m$. The value of $x$ is $...$
A sound is produced by plucking a string in a musical instrument, then
A uniform string oflength $20\ m$ is suspended from a rigid support. A short wave pulse is introduced at its lowest end. It starts moving up the string. The time taken to reach the supports is (take $g= 10 $ $ms^{-2}$ )
The equation of a wave on a string of linear mass density $0.04\, kgm^{-1}$ is given by : $y = 0.02\,\left( m \right)\,\sin \,\left[ {2\pi \left( {\frac{t}{{0.04\left( s \right)}} - \frac{x}{{0.50\left( m \right)}}} \right)} \right]$. The tension in the string is ..... $N$