If ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ are in arithmetic progression and ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, then ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $

  • A

    $909$

  • B

    $75$

  • C

    $750$

  • D

    $900$

Similar Questions

If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in $A.P.,$ prove that $a, b, c$ are in $A.P.$

If the sum and product of the first three term in an $A.P$. are $33$ and $1155$, respectively, then a value of its $11^{th}$ tern is

  • [JEE MAIN 2019]

Which term of the sequence $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ is purely imaginary

If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}}  + \sqrt {{a_n}} }} = $

  • [IIT 1982]

The sums of $n$ terms of two arithmatic series are in the ratio $2n + 3:6n + 5$, then the ratio of their ${13^{th}}$ terms is