For each positive real number $\lambda$. Let $A_\lambda$ be the set of all natural numbers $n$ such that $|\sin (\sqrt{n+1})-\sin (\sqrt{n})|<\lambda$. Let $A_\lambda^c$ be the complement of $A_\lambda$ in the set of all natural numbers. Then,
$A_{1 / 2}, A_{1 / 3}, A_{25}$ are all finite sets
$A_{1 / 3}$ is a finite set but $A_{1 / 2}, A_{25}$ are infi,nite sets
$A_{12}^c, A_{13}^c, A_{25}^c$ are all finites sets
$A_{1 / 3}, A_{2 / 5}$ are finite sets and $A_{1 / 2}$ is an infinite set
The equation ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ is solvable for
The number of solutions of the equation $\sin \theta+\cos \theta=\sin 2 \theta$ in the interval $[-\pi, \pi]$ is
If $x = \frac{{n\pi }}{2}$ , satisfies the equation $sin\, \frac{x}{2}- cos \frac{x}{2} = 1$ $- sin\, x$ & the inequality $\left| {\frac{x}{2}\,\, - \,\,\frac{\pi }{2}} \right|\,\, \le \,\,\frac{{3\pi }}{4}$, then:
If sum of all the solutions of the equation $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ in $\left[ {0,\pi } \right]$ is $k\pi $then $k$ is equal to :
If $\tan m\theta = \tan n\theta $, then the general value of $\theta $ will be in