अंतराल $(0,2\pi )$ में समीकरण $\tan x + \sec x = 2\cos x$ के हलों की संख्या होगी
$0$
$1$
$2$
$3$
यदि $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, तो $\theta = $
यदि $1 + \sin x + {\sin ^2}x + .....$ $\infty $ तक $ = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ तो
मानाकि $\theta, \phi \in[0,2 \pi]$ इस प्रकार है कि $2 \cos \theta(1-\sin \phi)=\sin ^2 \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta) > 0$ और $-1 < \sin \theta<-\frac{\sqrt{3}}{2}$. तब $\phi$ निम्न में से किसको संतुष्ट नहीं कर सकता ?
$(A)$ $0<\phi<\frac{\pi}{2}$ $(B)$ $\frac{\pi}{2}<\phi<\frac{4 \pi}{3}$
$(C)$ $\frac{4 \pi}{3}<\phi<\frac{3 \pi}{2}$ $(D)$ $\frac{3 \pi}{2}<\phi<2 \pi$
समीकरणों $2{\sin ^2}x + {\sin ^2}2x = 2$ व $\sin 2x + \cos 2x = \tan x,$ के उभयनिष्ठ मूल हैं
हल कीजिए $\sin 2 x-\sin 4 x+\sin 6 x=0$