The number of real values of $\lambda $ for which the system of linear equations $2x + 4y - \lambda  z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ has infinitely many solutions, is

  • [JEE MAIN 2017]
  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

If the system of linear equations $2 x+3 y-z=-2$  ; $x+y+z=4$  ; $x-y+|\lambda| z=4 \lambda-4$  (where $\lambda \in R$), has no solution, then

  • [JEE MAIN 2022]

If the system of equations

$x-2 y+3 z=9$

$2 x+y+z=b$

$x-7 y+a z=24$

has infinitely many solutions, then $a - b$ is equal to

  • [JEE MAIN 2020]

The system of equations $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $, has no solution for

If $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right],$ find $|A|$.

Let for any three distinct consecutive terms $a, b, c$ of an $A.P,$ the lines $a x+b y+c=0$ be concurrent at the point $\mathrm{P}$ and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations $ x+y+z=6, $ $ 2 x+5 y+\alpha z=\beta$ and $x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^2$ is equal to________.

  • [JEE MAIN 2024]