The system of equations $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $, has no solution for
$\lambda \ne 3,\mu = 10$
$\lambda = 3,\mu \ne 10$
$\lambda \ne 3,\mu \ne 10$
None of these
$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ is not divisible by
Evaluate the determinants : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
If the system of linear equations $x-2 y+z=-4 $ ; $2 x+\alpha y+3 z=5 $ ; $3 x-y+\beta z=3$ has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to
If the system of linear equations $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$, has infinitely many solutions then the value of $\lambda + \mu $ is
The system of equations $-k x+3 y-14 z=25$ $-15 x+4 y-k z=3$ $-4 x+y+3 z=4$ is consistent for all $k$ in the set