The number of real solution of equation $(\frac{3}{2})^x = -x^2 + 5x-10$ :-
$1$
$2$
$4$
No solution
The number of real roots of the equation $x | x |-5| x +2|+6=0$, is
The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:
If $\alpha, \beta $ and $\gamma$ are the roots of the equation $2{x^3} - 3{x^2} + 6x + 1 = 0$, then ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ is equal to
Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1 .$ Then, the value of $p _{ n }^{2}$ is .... .
If $x$ is real , the maximum value of $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ is