Show that function $f : R \rightarrow\{ x \in R :-1< x <1\}$ defined by $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$ is one-one and onto function.
It is given that $f : R \rightarrow\{ x \in R :-1< x <1\}$ is defined as $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$
For one-one
Suppose $f(x)=f(y),$ where $x, y \in R$
$\Rightarrow \frac{x}{1+|x|}=\frac{y}{1+|y|}$
It can be observed that if $x$ is positive and $y$ is negative,
Then, we have $\frac{x}{1+x}=\frac{y}{1+y} \Rightarrow 2 x y=x-y$
since, $x$ is positive and $y$ is negative
$x>y \Rightarrow x-y>0$
But, $2 x y$ is negative.
Then $2 x y \neq x-y$
Thus, the case of $x$ being positive and $y $ being negative can be ruled out.
Under a similar argument, $ x$ being negative and $y$ being positive can also be ruled out.
$\therefore $ $x$ and $y$ have to be either positive or negative.
When $x$ and $y$ are both positive, we have
$f(x)=f(y) \Rightarrow \frac{x}{1+x}$ $=\frac{y}{1+y} \Rightarrow x+x y=y+x y \Rightarrow x=y$
When $x$ and $y$ are both negative, we have
$f(x)=f(y) \Rightarrow \frac{x}{1-x}=\frac{y}{1-y} $ $\Rightarrow x-x y=y-x y \Rightarrow x=y$
$\therefore f$ is one $-$ one.
For onto
Now, let $y \in R$ such that $-1 < y < 1$
$(x)=f\left(\frac{y}{1+y}\right)$ $=\frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|}$ $=\frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)}$ $=\frac{y}{1+y-y}=y$
If $y$ is positive, then, there exists $x=y 1-y \in R$ such that
$(x)=f\left(\frac{y}{1-y}\right)$ $=\frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|}$ $=\frac{\frac{y}{1-y}}{1+\left(\frac{-y}{1-y}\right)}$ $=\frac{y}{1-y+y}=y$
$\therefore f$ is onto.
Hence, $f$ is one $-$ one and onto.
The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-
Let $f(x)=2 x^{2}-x-1$ and $S =\{n \in Z :|f(n)| \leq 800\}$ . Then value of $\sum_{n \in S} f(n)$ is . . . . .
If the domain and range of $f(x){ = ^{9 - x}}{C_{x - 1}}$ contains $m$ and $n$ elements respectively, then
Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Range of the function f (x) is
The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)