The number of integral terms in the expansion of ${\left( {\sqrt 3 + \sqrt[8]{5}} \right)^{256}}$ is
$32$
$33$
$34$
$35$
If coefficients of ${(2r + 1)^{th}}$ term and ${(r + 2)^{th}}$ term are equal in the expansion of ${(1 + x)^{43}},$ then the value of $r$ will be
The coefficient of the middle term in the binomial expansion in powers of $x$ of ${(1 + \alpha x)^4}$ and of ${(1 - \alpha x)^6}$ is the same if $\alpha $ equals
Let for the $9^{\text {th }}$ term in the binomial expansion of $(3+6 x)^{n}$, in the increasing powers of $6 x$, to be the greatest for $x=\frac{3}{2}$, the least value of $n$ is $n_{0}$. If $k$ is the ratio of the coefficient of $x ^{6}$ to the coefficient of $x ^{3}$, then $k + n _{0}$ is equal to.
If the coefficient of $x ^{10}$ in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ is $5^{ k } l$, where $l, k \in N$ and $l$ is coprime to $5$ , then $k$ is equal to
If the coefficients of the three consecutive terms in the expansion of $(1+ x )^{ n }$ are in the ratio $1: 5: 20$, then the coefficient of the fourth term is $............$.