वृत्तों ${x^2} + {y^2} - 4x - 6y - 12 = 0$ तथा ${x^2} + {y^2} + 6x + 18y + 26 = 0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

वृत्तों ${x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ व ${x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ को लम्बवत् काटने वाले वृत्त के केन्द्र का बिन्दुपथ है

वृत्तों ${x^2} + {y^2} - 3x - 4y + 5 = 0$ तथा $2{x^2} + 2{y^2} - 10x$ $ - 12y + 12 = 0$ के मूलाक्ष का समीकरण है

$k$ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + kx + 4y + 2 = 0$ व $2({x^2} + {y^2}) - 4x - 3y + k = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है

${x^2} + {y^2} + 2gx + c = 0$, ($c < 0$ के लिये) द्वारा समाक्ष वृत्त का निकाय प्रस्तुत करता है

यदि रेखा $y = 2x$ वृत्त ${x^2} + {y^2} - 10x = 0$ की एक जीवा हो तो इस जीवा को व्यास मानकर खींचे गये वृत्त का समीकरण होगा[