$\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x}  - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ ના $x \in  [0,2\pi ]$ માં ઉકેલોની સંખ્યા .......... છે. 

  • [JEE MAIN 2016]
  • A

    $2$

  • B

    $6$

  • C

    $4$

  • D

    $8$

Similar Questions

જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$

જો ${\sin ^2}\theta = \frac{1}{4},$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

ચલ $x$ એ સમીકરણ $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x}  = \sqrt 3$ એ ક્યાં અંતરાલમાં આવે છે ?

જો $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, તો $\sin \theta   = . . ..$

સમીકરણ  $cosec\, \theta -cot \,\theta = 1$ ના $[0,2 \pi]$ માં ઉકેલોની સંખ્યા ...... મળે