The number ${\log _{20}}3$  lies in

  • A

    $\left( {1/4,\,\,1/3} \right)$

  • B

    $\left( {1/3,\,\,1/2} \right)$

  • C

    $\left( {1/2,\,3/4} \right)$

  • D

    $\left( {3/4,\,\,4/5} \right)$

Similar Questions

If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is

The value of $\sqrt {(\log _{0.5}^24)} $ is

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval

If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is

If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ then $x$ has