The negation of the statement $q \wedge \left( { \sim p \vee  \sim r} \right)$

  • A

    $ \sim q \vee \left( {p \wedge r} \right)$

  • B

    $ \sim q \vee \left( {p \wedge  \sim r} \right)$

  • C

    $ \sim q \wedge \left( { \sim p \wedge r} \right)$

  • D

    $ \sim q \wedge \left( {p \wedge  \sim r} \right)$

Similar Questions

$(p \to q) \leftrightarrow (q\ \vee  \sim p)$ is 

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is 

  • [JEE MAIN 2020]

The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a

Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is

  • [JEE MAIN 2023]

$(p \wedge \, \sim q)\, \wedge \,( \sim p \vee q)$ is :-