Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is
If $\mathrm{A} \subseteq \mathrm{C},$ then $\mathrm{B} \subset \mathrm{A}$ or $\mathrm{D} \subset \mathrm{B}$
If $\mathrm{A} \ne \mathrm{C},$ then $\mathrm{A} \neq \mathrm{B}$ or $\mathrm{B} \ne \mathrm{D}$
If $\mathrm{A}\ne\mathrm{C},$ then $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$
If $\mathrm{A} \neq \mathrm{C},$ then $\mathrm{A} \neq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$
Which Venn diagram represent the truth of the statements “No child is naughty”
Where $U$ = Universal set of human beings, $C$ = Set of children, $N$ = Set of naughty persons
The negation of the statement
''If I become a teacher, then I will open a school'', is
The negation of the compound proposition $p \vee (\sim p \vee q)$ is
The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a
Consider the statement "The match will be played only if the weather is good and ground is not wet". Select the correct negation from the following: