Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is 

  • [JEE MAIN 2020]
  • A

    If $\mathrm{A} \subseteq \mathrm{C},$ then $\mathrm{B} \subset \mathrm{A}$ or $\mathrm{D} \subset \mathrm{B}$

  • B

    If $\mathrm{A} \ne \mathrm{C},$ then $\mathrm{A} \neq \mathrm{B}$ or $\mathrm{B} \ne \mathrm{D}$

  • C

    If $\mathrm{A}\ne\mathrm{C},$ then $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$

  • D

    If $\mathrm{A} \neq \mathrm{C},$ then $\mathrm{A} \neq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$

Similar Questions

Which Venn diagram represent the truth of the statements “No child is naughty”

Where $U$ = Universal set of human beings, $C$ = Set of children, $N$ = Set of naughty persons

The negation of the statement

''If I become a teacher, then I will open a school'', is

The negation of the compound proposition $p \vee (\sim p \vee q)$ is

The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a

Consider the statement "The match will be played only if the weather is good and ground is not wet". Select the correct negation from the following:

  • [JEE MAIN 2021]