$(p \wedge \, \sim q)\, \wedge \,( \sim p \vee q)$ is :-
A contradiction
A tautology
Either $(A)$ or $(B)$
Neither $(A)$ nor $(B)$
Which Venn diagram represent the truth of the statement“All students are hard working.”
Where $U$ = Universal set of human being, $S$ = Set of all students, $H$ = Set of all hard workers.
Which one of the following is a tautology ?
Which Venn diagram represent the truth of the statements “No child is naughty”
Where $U$ = Universal set of human beings, $C$ = Set of children, $N$ = Set of naughty persons
Consider the following two propositions:
$P_1: \sim( p \rightarrow \sim q )$
$P_2:( p \wedge \sim q ) \wedge((\sim p ) \vee q )$
If the proposition $p \rightarrow((\sim p ) \vee q )$ is evaluated as $FALSE$, then
Consider the following two statements :
$P :$ lf $7$ is an odd number, then $7$ is divisible by $2.$
$Q :$ If $7$ is a prime number, then $7$ is an odd number.
lf $V_1$ is the truth value of the contrapositive of $P$ and $V_2$ is the truth value of contrapositive of $Q,$ then the ordered pair $(V_1, V_2)$ equals