The natural number $m$, for which the coefficient of $x$ in the binomial expansion of $\left( x ^{ m }+\frac{1}{ x ^{2}}\right)^{22}$ is $1540,$ is

  • [JEE MAIN 2020]
  • A

    $19$

  • B

    $3$

  • C

    $13$

  • D

    $18$

Similar Questions

If the coefficients of $x^7$ in $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ and $x ^{-7}$ in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ are equal, then

  • [JEE MAIN 2023]

If the coefficients of ${r^{th}}$ term and ${(r + 4)^{th}}$ term are equal in the expansion of ${(1 + x)^{20}}$, then the value of r will be

The coefficient of $x^{10}$ in the expansion of $(1 + x)^2 (1 + x^2)^3 ( 1 + x^3)^4$ is euqal to

  • [JEE MAIN 2018]

In the expansion of $(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, the sum of the coefficient of $x^3$ and $x^{-13}$ is equal to

  • [JEE MAIN 2024]

In the expansion of $(1 + x)^{43}$ if the co-efficients of the $(2r + 1)^{th}$ and the $(r + 2)^{th}$ terms are equal, the value of $r$ is :