If the coefficients of $x^7$ in $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ and $x ^{-7}$ in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ are equal, then
$64 ab =243$
$729 ab =32$
$243 ab =64$
$32 ab =729$
If the greatest value of the term independent of $^{\prime}x^{\prime}$ in the expansion of $\left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10}$ is $\frac{10 !}{(5 !)^{2}}$, then the value of $' a^{\prime}$ is equal to:
The middle term in the expansion of ${(1 + x)^{2n}}$ is
Let the sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^2}\right)^n, x \neq 0, n \in N$, be $376$. Then the coefficient of $x^4$ is $......$
The middle term in the expansion of ${\left( {3x - \frac{{{x^3}}}{6}} \right)^9}$ are :-
The coefficient of $x^{7}$ in the expression $(1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+\ldots+x^{10}$ is