The mean and variance of $5$ observations are $5$ and $8$ respectively. If $3$ observations are $1,3,5$, then the sum of cubes of the remaining two observations is

  • [JEE MAIN 2023]
  • A

    $1072$

  • B

    $1792$

  • C

    $1216$

  • D

    $1456$

Similar Questions

The first of the two samples in a group has $100$ items with mean $15$ and standard deviation $3 .$ If the whole group has $250$ items with mean $15.6$ and standard deviation $\sqrt{13.44}$, then the standard deviation of the second sample is:

  • [JEE MAIN 2021]

The mean and standard deviation of $100$ observations were calculated as $40$ and $5.1$ , respectively by a student who took by mistake $50$ instead of $40$ for one observation. What are the correct mean and standard deviation?

If $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ and $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ then the standard deviation of $x_1, x_2, ...... x_{18}$ is :-

Mean of $5$ observations is $7.$ If four of these observations are $6, 7, 8, 10$ and one is missing then the variance of all the five observations is

  • [JEE MAIN 2013]

Given that $\bar{x}$ is the mean and $\sigma^{2}$ is the variance of $n$ observations $x_{1}, x_{2}, \ldots, x_{n}$ Prove that the mean and variance of the observations $a x_{1}, a x_{2}, a x_{3}, \ldots ., a x_{n}$ are $a \bar{x}$ and $a^{2} \sigma^{2},$ respectively, $(a \neq 0)$