Determine the mean and standard deviation for the following distribution:
$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\ \hline \end{array}$
$\begin{array}{|c|r|r|r|r|r|} \hline \text { Marks } & f_{i} & f_{i} x_{i} & d_{i}=x_{i}-\bar{x} & f_{i} d_{i} & f_{i} d_{i}^{2} \\ \hline 2 & 1 & 2 & -4 & -4 & 16 \\ \hline 3 & 6 & 18 & -3 & -18 & 54 \\ \hline 4 & 6 & 24 & -2 & -12 & 24 \\ \hline 5 & 8 & 40 & -1 & -8 & 8 \\ \hline 6 & 8 & 48 & 0 & 0 & 0 \\ \hline 7 & 2 & 14 & 1 & 2 & 2 \\ \hline 8 & 2 & 16 & 2 & 4 & 8 \\ \hline 9 & 3 & 27 & 3 & 9 & 27 \\ \hline 10 & 0 & 0 & 4 & 0 & 0 \\ \hline 11 & 2 & 22 & 5 & 10 & 50 \\ \hline 12 & 1 & 12 & 6 & 6 & 36 \\ \hline 13 & 0 & 0 & 7 & 0 & 0 \\ \hline 14 & 0 & 0 & 8 & 0 & 0 \\ \hline 15 & 0 & 0 & 9 & 0 & 0 \\ \hline 16 & 1 & 16 & 10 & 10 & 100 \\ \hline \text { Total } & \Sigma f_{i}=40 & \Sigma f_{i} x_{i}=239 & & \Sigma f_{i} d_{i}=-1 & \Sigma f_{i} x_{i}^{2}=325 \\ \hline \end{array}$
$\therefore \quad$ Mean $\bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{239}{40}=5.975 \approx 6$
and $\sigma=\sqrt{\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\right)^{2}}=\sqrt{\frac{325}{40}-\left(\frac{-1}{40}\right)^{2}}$
$=\sqrt{8.125-0.000625}=\sqrt{8.124375}=2.85$
Find the mean and variance for the first $10$ multiples of $3$
The $S.D$ of $15$ items is $6$ and if each item is decreased or increased by $1$, then standard deviation will be
The mean and $S.D.$ of the marks of $200$ candidates were found to be $40$ and $15$ respectively. Later, it was discovered that a score of $40$ was wrongly read as $50$. The correct mean and $S.D.$ respectively are...
The number of values of $a \in N$ such that the variance of $3,7,12 a, 43-a$ is a natural number is (Mean $=13$)
The mean of the numbers $a, b, 8,5,10$ is $6$ and their variance is $6.8$. If $M$ is the mean deviation of the numbers about the mean, then $25\; M$ is equal to