If the variance of the following frequency distribution is $50$ then $x$ is equal to:
Class | $10-20$ | $20-30$ | $30-40$ |
Frequency | $2$ | $x$ | $2$ |
$4$
$-2$
$-4$
$2$
The variance of $20$ observations is $5 .$ If each observation is multiplied by $2,$ find the new variance of the resulting observations.
Consider the statistics of two sets of observations as follows :
Size | Mean | Variance | |
Observation $I$ | $10$ | $2$ | $2$ |
Observation $II$ | $n$ | $3$ | $1$ |
If the variance of the combined set of these two observations is $\frac{17}{9},$ then the value of $n$ is equal to ..... .
The $S.D.$ of a variate $x$ is $\sigma$. The $S.D.$ of the variate $\frac{{ax + b}}{c}$ where $a, b, c$ are constant, is
The following values are calculated in respect of heights and weights of the students of a section of Class $\mathrm{XI}:$
Height | Weight | |
Mean | $162.6\,cm$ | $52.36\,kg$ |
Variance | $127.69\,c{m^2}$ | $23.1361\,k{g^2}$ |
Can we say that the weights show greater variation than the heights?
The mean and variance of $7$ observations are $8$ and $16$ respectively. If one observation $14$ is omitted a and $b$ are respectively mean and variance of remaining $6$ observation, then $a+3 b-5$ is equal to $..........$.