उस बिन्दु का बिन्दुपथ, जिसकी किन्हीं दो परस्पर लम्बवत् रेखाओं से दूरियों का योग $2$ इकाई है (प्रथम चतुर्थांश में), है
$x + y + 2 = 0$
$x + y = 2$
$x - y = 2$
इनमें से कोई नहीं
किसी आयत की एक भुजा $4x + 7y + 5 = 0$ के अनुदिश है। इसके दो शीर्ष $(-3, 1)$ व $(1, 1)$ हैं, तो अन्य तीन भुजाओं के समीकरण हैं
उन सरल रेखाओं के समीकरण, जो अक्षों के साथ समकोण त्रिभुज बनाते हैं, जिसका क्षेत्रफल $6$ वर्ग इकाई एवं कर्ण $5$ इकाई है
दूरी सूत्र का प्रयोग किए बिना दिखलाइए कि बिंदु $(-2,-1),(4,0),(3,3)$ और $(-3,2)$ एक समांतर चतुर्भुज के शीर्ष हैं।
किसी चतुर्भुज के शीर्षों के निर्देशांक $(2, -1), (0, 2), (2, 3)$ व $(4, 0)$ हैं। इसके विकर्णों के मध्य कोण है
उस समान्तर चतुभुज का क्षेत्रफल, जिसकी भुजाएँ $x\cos \alpha + y\sin \alpha = p$, $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ व $x\cos \beta + y\sin \beta = s$ हैं, होगा