रेखा $lx + my - n = 0$, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ को स्पर्श करेगी, यदि
${a^2}{l^2} + {b^2}{m^2} = {n^2}$
$a{l^2} + b{m^2} = {n^2}$
${a^2}l + {b^2}m = n$
इनमें से कोई नहीं
दीर्घवृत्त, जिसका केन्द्र मूलबिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि एक नियता $x = 4$ है तब दीर्घवृत्त का समीकरण है
उस दीर्घवृत्त का समीकरण, जिसके शीर्ष $(2, -2), (2, 4)$ हैं तथा उत्केन्द्रता $\frac{1}{3}$ है, होगा
दीर्घवृत्त $\mathrm{E}: \frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की नियता $\mathrm{x}=8$ है तथा संगत नाभि $(2,0)$ है। यदि प्रथम चतुर्थांश में $\mathrm{E}$ के बिन्दु $\mathrm{P}$ पर स्पर्श रेखा, बिन्दु $(0,4 \sqrt{3})$ से होकर जाती है तथा $\mathrm{x}$-अक्ष को $\mathrm{Q}$ पर काटती है, तो $(3 \mathrm{PQ})^2$ बराबर है _______________
एक दीर्घवृत्त एक गोल धागे से बनाया जाता है जो दो पिनों के ऊपर से होकर गुजरता है । यदि इस प्रकार बने दीर्घवृत्त के अक्ष क्रमश: $6$ सेमी व $4$ सेमी हों, तो धागे की लम्बाई और पिनों के बीच की दूरी सेमी में क्रमश: होगी
माना कि $F_1\left(x_1, 0\right)$ और $F_2\left(x_2, 0\right)$ (जिसमें $x_1<0, x_2>0$ ) दीर्घवृत्त (ellipse) $\frac{x_2^2}{9}+\frac{y^2}{8}=1$ की नाभियाँ (Foci) हैं। माना कि एक परवलय (parabola) जिसका शीर्ष (vertex) मूलबिन्दु (origin) पर और नाभि (focus) $F_2$ पर है, दीर्घवृत्त को प्रथम चतुर्थांश (first quadrant) में $M$ पर और चतुर्थ चतुर्थांश (fourth quadrant) में $N$ पर प्रतिच्छेदित करता है।
($1$) त्रिभुज $F_1 M N$ का लंबकेन्द्र (orthocentre) है
$(A)$ $\left(-\frac{9}{10}, 0\right)$ $(B)$ $\left(\frac{2}{3}, 0\right)$ $(C)$ $\left(\frac{9}{10}, 0\right)$ $(D)$ $\left(\frac{2}{3}, \sqrt{6}\right).$
($2$) यदि दीर्घवृत्त के बिन्दुओं $M$ और $N$ पर स्परिखाएँ (tangents) $R$ पर मिलती हैं और परवलय के बिन्दु $M$ पर अभिलंब $x$-अक्ष को $Q$ पर मिलता है, तब त्रिभुज $M Q R$ के क्षेत्रफल और चतुर्भुज (quadrilateral) $M F_1 N F_2$ के क्षेत्रफल का अनुपात (ratio) है
$(A)$ $3: 4$ $(B)$ $4: 5$ $(C)$ $\sec 5: 8$ $(D)$ $2: 3$
दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)