રેખા $x=8$એ ઉપવલય $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ની નાભિ $(2,0)$ને સુસંગત નિયામિકા છે.પ્રથમ ચરણમાં $E$ના બિંદુ $P$ આગળનો સ્પર્શક જો બિંદુ $(0,4 \sqrt{3})$ માંથી પસાર થતો હોય અને $x-$અક્ષને $Q$ બિંદુ આગળ છેદતો હોય,તો $(3PQ)^2=.........$
$38$
$39$
$35$
$36$
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
જો $y\,\, = \,\,mx\, + \,\,c$ એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય , તો $c$ નું મૂલ્ય ......
રેખા $L$ એ રેખાઓ $b x+10 y-8=0$ અને $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$ ના છેદબિંદુ માંથી પસાર થાય છે . જો રેખા $L$ એ બિંદુ $(1,1)$ માંથી પસાર થાય છે અને વર્તુળ $17\left( x ^{2}+ y ^{2}\right)=16$ ને સ્પર્શે છે તો ઉપવલય $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ ની ઉત્કેન્દ્રીતા મેળવો.
ધારો કે $PQ$ એ પરવલય $y^{2}=4 x$ ની એક એવી નાભિજીવા છે કે જે બિંદુ $(3,0)$ આગળ $\frac{\pi}{2}$ નો ખૂણો આંતરે છે.ધારો કે રેખાખંડ $PQ$ એ ઉપવલય $E : \frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a ^{2}> b ^{2}$ ની પણ નાભિજીવા છે. ને $e$ એ ઉપવલય $E$ ની ઉત્કેન્દ્રતા હોય,તો $\frac{1}{e^{2}}$ નું મૂલ્ય $\dots\dots$છે.
પ્રકાશનું કિરણ બિંદુ $(2,1)$ માંથી પસાર થાય ને $y$ - અક્ષ પરનું બિંદુ $P$ થી પરાવર્તિત પામી ને બિંદુ $(5,3)$ માંથી પસાર થાય છે. પરાવર્તિત કિરણ એ ઉપવલયની નિયામિકા બને છે કે જેની ઉત્કેન્દ્રિતા $\frac{1}{3}$ છે અને નજીકના નાભીનું આ નિયામિકા થી અંતર $\frac{8}{\sqrt{53}}$ હોય તો બીજી નિયમિકાનું સમીકરણ મેળવો.