The line $x =8$ is the directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ with the corresponding focus $(2,0)$. If the tangent to $E$ at the point $P$ in the first quadrant passes through the point $(0,4 \sqrt{3})$ and intersects the $x$-axis at $Q$, then $(3PQ)^2$ is equal to $........$
$38$
$39$
$35$
$36$
The eccentricity of the ellipse $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ is
If a tangent to the ellipse $x^{2}+4 y^{2}=4$ meets the tangents at the extremities of its major axis at $\mathrm{B}$ and $\mathrm{C}$, then the circle with $\mathrm{BC}$ as diameter passes through the point:
An ellipse passes through the point $(-3, 1)$ and its eccentricity is $\sqrt {\frac{2}{5}} $. The equation of the ellipse is
The ellipse $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ is inscribed in a rectangle $R$ whose sides are parallel to the coordinate axes.
Another ellipse $E _2$ passing through the point $(0,4)$ circumscribes the rectangle $R$.. The eccentricity of the ellipse $E _2$ is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$