એક સમરૂપ લાકડીની લંબાઈ $100.0 \,cm$ અને તેની ત્રિજ્યા $1.00 \,cm$ છે. જો લંબાઈને $1 \,mm$ ન્યુનતમ માપન શક્તિ ધરાવતા મીટરના સળિયાથી માપવામાં આવે અને ત્રિજ્યાને $0.1 \,mm$ ન્યૂનતમ માપન ક્ષમતા ધરવાતા વર્નીયર કેલીપર્સથી માપવામાં આવે તો નળાકારની ધનતાની ગણતરીમાં પ્રતિશત ત્રુટી ............ $\%$ હશે ?
$2.1$
$3$
$2.01$
$3.2$
ત્રણ વિદ્યાર્થી $S_{1}, S_{2}$ અને $S_{3}$ એ સાદા લોલકની મદદથી ગુરુત્વપ્રવેગ $(g)$ માપવાનો પ્રયોગ કરે છે. તે જુદી જુદી લંબાઈના લોલક વડે જુદા જુદા દોલનોની સંખ્યા માટેનો સમય નોંધે છે. આ અવલોકનો નીચેના ટેબલમાં આપેલા છે.
વિદ્યાર્થીની સંખ્યા | લોલકની લંબાઈ $(cm)$ | દોલનોની સંખ્યા $(n)$ | દોલનો માટેનો કુલ સમય | આવર્તકાળ $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(લંબાઇની લઘુતમ માપશક્તિ $=0.1 \,{m}$, સમયની લઘુતમ માપશક્તિ$=0.1\, {s}$ )
જો $E_{1}, E_{2}$ અને $E_{3}$ એ $g$ માં અનુક્રમે $1,2$ અને $3$ વિદ્યાર્થીની પ્રતિશત ત્રુટિ હોય, તો લઘુત્તમ પ્રતિશત ત્રુટિ કયા વિદ્યાર્થી દ્વારા મેળવાય હશે?
એક ભૌતિક રાશિ $A$ બીજા ચાર આવકલોકન $p,q,r$ અને $s$ પર $A=\frac{\sqrt{pq}}{r^2s^3}$ મુજબ આધાર રાખે છે. $p,q,r$ અને $s$ ના માપનમા પ્રતિશત ત્રુટિ અનુક્રમે $1\%,$ $3\%,\,\, 0.5\%$ અને $0.33\%$ હોય તો $A$ ના માપનમા પ્રતિશત ત્રુટિ કેટલા $\%$ હશે?
એક વિદ્યાર્થી આપેલા સમયમાં શરૂઆતમાં સ્થિર રહેલા પદાર્થના મુક્ત પતન દરમિયાન કાપેલા અંતરને માપે છે. તે આ માહિતીનો ઉપયોગ કરીને $g$, ગુરુત્વાકર્ષણના પ્રવેગનો અંદાજ કાઢે છે. જો અંતર અને સમયના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ અનુક્રમે $e_1$ અને $e_2$ હોય, તો $g$ ના અંદાજમાં પ્રતિશત ત્રુટિ કેટલી હશે?
કોલમ $-I$ માં ઉપકરણ અને કોલમ $-II$ માં તેમની લઘુતમ માપશક્તિ આપેલી છે તો તેમને યોગ્ય રીતે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(1)$ માઇક્રોસ્કોપ | $(a)$ $0.01\,cm$ |
$(2)$ માઇક્રોમીટર સ્ક્રૂગેજ | $(b)$ $0.001\,cm$ |
$(c)$ $0.0001\,cm$ |
સાદા લોલકનો આવર્તકાળ $T=2\pi \sqrt {\frac{l}{g}} $ વડે આપવામાં આવે છે. $L$ નું $1\,mm$ ની ચોકસાઈથી મપાયેલ મૂલ્ય $20.0\,cm$ છે. અને તેનાં $100$ દોલનો માટે લાગતો સમયગાળો $90\;s$ છે, જેને $1\;s$ જેટલું વિભેદન ધરાવતી કાંડા ઘડિયાળ વડે માપવામાં આવે છે. $g$ શોધવામાં રહેલી ચોકસાઇ ........ $\%$