સાદા લોલકનો આવર્તકાળ $T=2\pi \sqrt {\frac{l}{g}} $ વડે આપવામાં આવે છે. $L$ નું $1\,mm$ ની ચોકસાઈથી મપાયેલ મૂલ્ય $20.0\,cm$ છે. અને તેનાં $100$ દોલનો માટે લાગતો સમયગાળો $90\;s$ છે, જેને $1\;s$ જેટલું વિભેદન ધરાવતી કાંડા ઘડિયાળ વડે માપવામાં આવે છે. $g$ શોધવામાં રહેલી ચોકસાઇ ........ $\%$
$3 $
$1$
$5$
$2 $
બીકર (પાત્ર) જ્યારે ખાલી હોય ત્યારે દળ $(10.1 \pm 0.1) \,gm $ ગ્રામ છે. અને જ્યારે તે સંપૂર્ણ પ્રવાહીથી ભરેલું હોય ત્યારે તેનું દળ $ (17.3 \pm 0.1)$ ગ્રામ થાય છે. ચોકસાઈની શક્ય મર્યાદામાં પ્રવાહીના દળનું સર્વોતમ મૂલ્ય શું હશે ?
જો $50$ અવલોકનો દરમિયાન યાર્દચ્છિક ત્રુટી $\alpha$ છે, તો $150$ અવલોકનો દરમિયાન કેટલી યાદ્દચ્છિક ત્રુટી હશે ?
એક બળ $F$ એ $L$ સમતલના ચોરસ વિસ્તાર પર લાગુ થાય છે. જો $L$ ના માપનમાં પ્રતિશત ત્રુટી $2 \%$ છે અને તે $F$ માં $4 \%$ છે, તો દબાણમાં મહત્તમ પ્રતિશત ત્રુટી ........... $\%$ હશે.
'' માપનની ચોકસાઈ, નિરપેક્ષ ત્રુટિ વડે નહિ પરંતુ પ્રતિશત ત્રુટિ વડે જ નક્કી કરી શકાય છે.” આ વિધાન સમજાવો.
ગુરુત્વાકર્ષણને લીધે આવતા પ્રવેગને સાદા લોલકનો ઉપયોગ કરીને પૃથ્વીની સપાટી પર માપવામાં આવે છે. જો $\alpha$ અને $\beta$ અનુક્રમે લંબાઈ અને સમયના માપનમાં સાપેક્ષ ત્રુટિ છે, તો ગુરુત્વાકર્ષણને કારણે પ્રવેગ માપનની પ્રતિશત ત્રુટી કેટલી થશે?