$ \alpha $ એ $x$ ની ન્યૂનતમ પૃણાંક કિમત છે કે જેથી $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ થાય તો .....
${\alpha ^2} + 3\alpha - 4 = 0$
${\alpha ^2} - 5\alpha + 4 = 0$
${\alpha ^2} - 7\alpha + 6 = 0$
${\alpha ^2} + 5\alpha - 6 = 0$
ધારોકે $p$ અને $q$ બે એવી વાસ્તવિક સંખ્યાઓ છે કે જેથી $p+q=3$ અને $p^{4}+q^{4}=369$. તો $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}=$
સમીકરણ ${\left( {\frac{5}{7}} \right)^x}\, = \, - {x^2} + 2x\, - \,3$ વાસ્તવિક ઉકેલોની સંખ્યા કેટલી હોય ?
સમીકરણ $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ ને:
જો $\alpha ,\beta ,\gamma$ એ સમીકરણ $x^3 - x - 2 = 0$ ના બીજો હોય તો $\alpha^5 + \beta^5 + \gamma^5$ ની કિમત મેળવો
જો $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5,\,$ તો $\,\,{\rm{x = \ldots }}..{\rm{ }}$