The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies
${\alpha ^2} + 3\alpha - 4 = 0$
${\alpha ^2} - 5\alpha + 4 = 0$
${\alpha ^2} - 7\alpha + 6 = 0$
${\alpha ^2} + 5\alpha - 6 = 0$
The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is
If graph of $y = ax^2 -bx + c$ is following, then sign of $a$, $b$, $c$ are
If $x$ be real, the least value of ${x^2} - 6x + 10$ is
The roots of $|x - 2{|^2} + |x - 2| - 6 = 0$are
Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_1\right)\left(x-a_2\right)$ $+\left(x-a_2\right)\left(x-a_3\right)+\left(x-a_3\right)\left(x-a_1\right)$ with $a_1, a_2, a_3 \in R$.Then, $f(x) \geq 0$ if and only if