The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies

  • [JEE MAIN 2013]
  • A

    ${\alpha ^2} + 3\alpha  - 4 = 0$

  • B

    ${\alpha ^2} - 5\alpha  + 4 = 0$

  • C

    ${\alpha ^2} - 7\alpha  + 6 = 0$

  • D

    ${\alpha ^2} + 5\alpha  - 6 = 0$

Similar Questions

The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is

If graph of $y = ax^2 -bx + c$ is following, then sign of $a$, $b$, $c$ are

If $x$ be real, the least value of ${x^2} - 6x + 10$ is

The roots of $|x - 2{|^2} + |x - 2| - 6 = 0$are

Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_1\right)\left(x-a_2\right)$ $+\left(x-a_2\right)\left(x-a_3\right)+\left(x-a_3\right)\left(x-a_1\right)$ with $a_1, a_2, a_3 \in R$.Then, $f(x) \geq 0$ if and only if

  • [KVPY 2012]