The inverse of the proposition $(p\; \wedge \sim q) \Rightarrow r$ is
$\sim r \Rightarrow\;\sim p \vee q$
$\sim p \vee q \Rightarrow \;\sim r$
$r \Rightarrow p\; \wedge \sim q$
None of these
Which of the following is a contradiction
$\sim (p \vee q) \vee (~ p \wedge q)$ is logically equivalent to
For integers $m$ and $n$, both greater than $1$ , consider the following three statements
$P$ : $m$ divides $n$
$Q$ : $m$ divides $n^2$
$R$ : $m$ is prime,
then true statement is
The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.