$\sim (p \vee q) \vee (~ p \wedge q)$ is logically equivalent to

  • A

    $\sim p$

  • B

    $p$

  • C

    $q$

  • D

    $\sim q$

Similar Questions

Which one of the following is a tautology ?

  • [JEE MAIN 2020]

Negation of the compound proposition : If the examination is difficult, then I shall pass if I study hard

For any two statements $p$ and $q,$ the negation of the expression $p \vee ( \sim p\, \wedge \,q)$ is 

  • [JEE MAIN 2019]

The statement $( p \wedge(\sim q )) \Rightarrow( p \Rightarrow(\sim q ))$ is

  • [JEE MAIN 2023]

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [JEE MAIN 2013]