$\sim (p \vee q) \vee (~ p \wedge q)$ is logically equivalent to
$\sim p$
$p$
$q$
$\sim q$
Which one of the following is a tautology ?
Negation of the compound proposition : If the examination is difficult, then I shall pass if I study hard
For any two statements $p$ and $q,$ the negation of the expression $p \vee ( \sim p\, \wedge \,q)$ is
The statement $( p \wedge(\sim q )) \Rightarrow( p \Rightarrow(\sim q ))$ is
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.