$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$ પ્રમાણે વ્યાખ્યાયિત વિધેય $f: \mathbb{R} \rightarrow \mathbb{R}$ ધ્યાને લો. જો $f$ નું સંયોજન $\underbrace{(f \circ f \circ f \circ \cdots \circ f)}_{1090 \cdots+1}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$ હોય, તો $\sqrt{3 \alpha+1}$ નું મૂલ્ચ .......... છે.

  • [JEE MAIN 2024]
  • A

    $1044$

  • B

    $1075$

  • C

    $1056$

  • D

    $1024$

Similar Questions

વિધેય $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ નો પ્રદેશ મેળવો.

$f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$ પરના એક-એક અને વ્યાપ્ત વિધેયની સંખ્યા મેળવો કે જેથી $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ થાય.

  • [JEE MAIN 2022]

વિધેય $f:\left[ { - 1,1} \right] \to R$ જ્યા $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ ધ્યાનમા લ્યો. જ્યા $\alpha _i\ 's$ એ ધન અચળ હોય અને  $n \in N < 100$ હોય તો $f(x)$ એ .................. વિધેય છે.

જો વિધેય $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ નો પ્રદેશ $[\alpha, \beta) U (\gamma, \delta]$ હોય, તો $|3 \alpha+10(\beta+\gamma)+21 \delta|=..........$

  • [JEE MAIN 2023]

સાબિત કરો કે $f: N \rightarrow N$, $f(x)=2 x$ વડે વ્યાખ્યાયિત વિધેય એક-એક છે, પરંતુ વ્યાપ્ત નથી.