સ્પિંગથી લટકાવેલ $m$ દળની કંપનની આવૃતિ $v_1$ છે. સ્પ્રિંગની લંબાઈ તેની મૂળ લંબાઈના ત્રીજા ભાગની કરવામાં આવે ત્યારે તે $m$ દળની આવૃત્તિ $v_2$ છે. આથી,
$v_2=3 v_1$
$3 v_2=v_1$
$v_2=\sqrt{3} v_1$
$\sqrt{3} v_2=v_1$
$2\,kg$ દળ ધરાવતા બ્લોકને $20\,N / m$ સ્પ્રિંગ અચળાંક ધરાવતી બે સમાન સ્પ્રિંગ સાથે જોડવામાં આવે છે. બ્લોકને ધર્ષણ રહિત સપાટી પર મૂકવામાં આવે છે અને સ્પ્રિંગના છેડાને જડ આધાર સાથે લગાડવામાં આવે છે. (આકૃતિમાં જુઓ).જ્યારે દળને સંતુલન સ્થિતિમાંથી સ્થાનાંતરિત કરવામાં આવે ત્યારે તે સરળ આવર્ત ગતિ કરે છે. દોલનોનો આવર્ત કાળ $\frac{\pi}{\sqrt{x}}$ છે. તો $x$ નું મૂલ્ય $...........$ છે.
જ્યારે સ્પ્રિંગના છેડે લટકાવેલ તંત્રને ચંદ્ર પર લઈ જઈ દોલિત કરતાં તેનાં આવર્તકાળમાં શું ફેર પડે ?
બે સ્પ્રિંગને શ્રેણીમાં જોડીને તેના પર $m$ દળ લટકાવેલ છે. સ્પ્રિંગના બળ અચળાંક $K_1$ અને $K_2$ છે. લટકાવેલ દળનો આવર્તકાળ કેટલો થશે?
$600 \,N/m $ બળ અચળાંક ધરાવતી સ્પ્રિંગ ધરાવતી બંદૂકમાં $15\, g$ નો બોલ મૂકીને $5\,cm$ દબાવીને મુકત કરતાં દડાની મહત્તમ અવધી કેટલી ..... $m$ થાય? ($g = 10\, m/s^2$)
સરળ આવર્તગતિનો મહતમ કંપવિસ્તાર($cm$ માં) કે જેથી બ્લોક $A$ બ્લોક $B$ બ્લોક પર ખસે નહીં $(K =100 N / m)$