The four points whose co-ordinates are $(2, 1), (1, 4), (4, 5), (5, 2)$ form :
a rectangle which is not a square
a trapezium which is not a parallelogram
a square
a rhombus which is not a square.
Two sides of a parallelogram are along the lines, $x + y = 3$ and $x -y + 3 = 0$. If its diagonals intersect at $(2, 4)$, then one of its vertex is
The line $3x + 2y = 24$ meets $y$-axis at $A$ and $x$-axis at $B$. The perpendicular bisector of $AB$ meets the line through $(0, - 1)$ parallel to $x$-axis at $C$. The area of the triangle $ABC$ is ............... $\mathrm{sq. \, units}$
A square of side a lies above the $x$ -axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha ,(0 < \alpha < \frac{\pi }{4})$ with the positive direction of $x$-axis. The equation of its diagonal not passing through the origin is
In a $\triangle A B C$, points $X$ and $Y$ are on $A B$ and $A C$, respectively, such that $X Y$ is parallel to $B C$. Which of the two following equalities always hold? (Here $[P Q R]$ denotes the area of $\triangle P Q R)$.
$I$. $[B C X]=[B C Y]$
$II$. $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$
If two vertices of a triangle are $(5, -1)$ and $( - 2, 3)$ and its orthocentre is at $(0, 0)$, then the third vertex