The following data was obtained for chemical reaction given below at $975\, \mathrm{~K}$.
$2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$[NO]$ $\mathrm{mol} \mathrm{L}^{-1}$ |
${H}_{2}$ $\mathrm{mol} \mathrm{L}^{-1}$ |
Rate $\mathrm{mol}L^{-1}$ $s^{-1}$ |
|
$(A)$ | $8 \times 10^{-5}$ | $8 \times 10^{-5}$ | $7 \times 10^{-9}$ |
$(B)$ | $24 \times 10^{-5}$ | $8 \times 10^{-5}$ | $2.1 \times 10^{-8}$ |
$(C)$ | $24 \times 10^{-5}$ | $32 \times 10^{-5}$ | $8.4 \times 10^{-8}$ |
The order of the reaction with respect to $\mathrm{NO}$ is ..... .
$1$
$4$
$2$
$3$
Velocity constant $K$ of a reaction is affected by
What is rate law ? Give a relation between rate of reaction and concentration of reactants.
Assertion : The kinetics of the reaction -
$mA + nB + pC \to m' X + n 'Y + p 'Z$
obey the rate expression as $\frac{{dX}}{{dt}} = k{[A]^m}{[B]^n}$.
Reason : The rate of the reaction does not depend upon the concentration of $C$.
In a reaction $2A + B \to {A_2}B$, the reactant $ A $ will disappear at
In which of the following cases, does the reaction go farthest to completion