Assertion : The kinetics of the reaction -
$mA + nB + pC \to m' X + n 'Y + p 'Z$
obey the rate expression as $\frac{{dX}}{{dt}} = k{[A]^m}{[B]^n}$.
Reason : The rate of the reaction does not depend upon the concentration of $C$.
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
An example of a pseudo -unimolecular reaction is
What is the order of reaction' for $A + B \to C$
Observation | $[A]$ | $[B]$ | Rate of reaction |
$1$ | $0.1$ | $0.1$ | $2\times10^{-3}\, mol\, L^{-1}\,sec^{-1}$ |
$2$ | $0.2$ | $0.1$ | $0.4\times10^{-2}\, mol\, L^{-1}\,sec^{-1}$ |
$3$ | $0.1$ | $0.2$ | $1.4\times10^{-2}\, mol\, L^{-1}\,sec^{-1}$ |
Write differential rate expression of following reaction and give its order of reaction :
$5 B r^{-}+B r O_{3}^-+6 H^{+} \rightarrow 3 B r_{2}+3 H_{2} O$
Write unit of rate constant of following reaction :
$1.$ $\frac {1}{2}$ order
$2.$ $\frac {3}{2}$ order
For a reaction $2NO(g) + C{l_2}(g)$ $\rightleftharpoons$ $\,2NOCl(g)$. When concentration of $C{l_2}$ is doubled, the rate of reaction becomes two times of the original. When the concentration of $NO$ is doubled the rate becomes four times. What is the order of the reaction