In a reaction $2A + B \to {A_2}B$, the reactant $ A $ will disappear at
Half the rate that $B$ will decrease
The same rate that $ B$ will decrease
Twice the rate that $B$ will decrease
The same rate that ${A_2}B$ will form
The reaction $2FeC{l_3} + SnC{l_2} \to 2FeC{l_2} + SnC{l_4}$ is an example of
The following results were obtained during kinetic studies of the reaction $2A+B$ $\to$ products
Experiment |
$[A]$ (in $mol\, L^{-1})$ |
$[B]$ (in $mol\, L^{-1})$ |
Initial rate of reaction (in $mol\, L^{-1}\,min^{-1})$ |
$I$ | $0.10$ | $0.20$ | $6.93 \times {10^{ - 3}}$ |
$II$ | $0.10$ | $0.25$ | $6.93 \times {10^{ - 3}}$ |
$III$ | $0.20$ | $0.30$ | $1.386 \times {10^{ - 2}}$ |
The time(in minutes) required to consume half of $A$ is
For the reaction system $2NO(g) + {O_2}(g) \to 2N{O_2}(g)$ volume is suddenly produced to half its value by increasing the pressure on it. If the reaction is of first order with respect to $O_2$ and second order with respect to $NO,$ the rate of reaction will
The rate of dissappearance of $MnO_4^-$ in the following reaction is $4.56 \times 10^{-3}\, M/s$
$2MnO_4^-+ 10I^-+ 16H^+ \to 2Mn^{2+} + 5I_2 + 8 H_2O$
The rate of apperance of $I_2$ is
Define following term / Give definition :
$(1)$ Elementary reaction
$(2)$ Complex reaction