In which of the following cases, does the reaction go farthest to completion
$K = {10^3}$
$K = {10^{ - 2}}$
$K = 10$
$K = 1$
For the reaction $A + B \to $ products, what will be the order of reaction with respect to $A$ and $B$ ?
Exp. | $[A]\,(mol\,L^{-1})$ | $[B]\,(mol\,L^{-1})$ | Initial rate $(mol\,L^{-1}\,s^{-1})$ |
$1.$ | $2.5\times 10^{-4}$ | $3\times 10^{-5}$ | $5\times 10^{-4}$ |
$2.$ | $5\times 10^{-4}$ | $6\times 10^{-5}$ | $4\times 10^{-3}$ |
$3.$ | $1\times 10^{-3}$ | $6\times 10^{-5}$ | $1.6\times 10^{-2}$ |
The rate law for the reaction below is given by the expression $k\left[ A \right]\left[ B \right]$
$A + B \to$ Product
If the concentration of $B$ is increased from $0.1$ to $0.3\, mole$, keeping the value of $A$ at $0.1\, mole$, the rate constant will be
Write the rate equation for the reaction $2A + B\to C$ if the order of the reaction is zero.
Write unit of rate constant of following reaction :
$1.$ fourth order
$2.$ third order
In a reaction between $A$ and $B$, the initial rate of reaction $\left(r_{0}\right)$ was measured for different initial concentrations of $A$ and $B$ as given below:
$A/mol\,\,{L^{ - 1}}$ | $0.20$ | $0.20$ | $0.40$ |
$B/mol\,\,{L^{ - 1}}$ | $0.30$ | $0.10$ | $0.05$ |
${r_0}/mol\,\,{L^{ - 1}}\,\,{s^{ - 1}}$ | $5.07 \times 10^{-5}$ | $5.07 \times 10^{-5}$ | $1.43 \times 10^{-4}$ |
What is the order of the reaction with respect to $A$ and $B$?