સમક્ષિતિજ સમતલ પર $a$ ત્રિજ્યાનો વિજભારરહિત અર્ધગોળો પડેલો છે.આકૃતિમાં દર્શાવ્યા પ્રમાણે તેના પર શિરોલંબ સાથે $\frac {\pi }{4}$ ના ખૂણે એકસમાન વિદ્યુતક્ષેત્ર લગાવેલ છે.અર્ધગોળાની વક્ર સપાટીમાંથી પસાર થતું વિદ્યુત ફ્લક્સ કેટલું હશે?
$\pi {a^2}E$
$\frac{{\pi {a^2}E}}{{\sqrt 2 }}$
$\frac{{\pi {a^2}E}}{{2\sqrt 2 }}$
$\frac{{(\pi + 2)\,\pi {a^2}E}}{{{{(2\sqrt 2 )}^2}}}$
આકૃતિમાં દર્શાવ્યા પ્રમાણે બોક્સમાથી $\overrightarrow{\mathrm{E}}=4 \mathrm{x} \hat{\mathrm{i}}-\left(\mathrm{y}^{2}+1\right) \hat{\mathrm{j}}\; \mathrm{N} / \mathrm{C}$ જેટલું વિદ્યુતક્ષેત્ર પસાર થાય છે $A B C D$ અને $BCGF$ સપાટીમાંથી પસાર થતું ફ્લક્સ $\phi_{I}$ અને $\phi_{\mathrm{II}}$ હોય તો તેમનો તફાવત $\phi_{\mathrm{I}}-\phi_{\mathrm{II}}$ ($\mathrm{Nm}^{2} / \mathrm{C}$ માં) કેટલો મળે?
$\vec E\,\, = \,\,3\,\, \times \,\,{10^3}\,\hat i\,\,(N\,/\,\,C)$ લો. $10\, cm$ ની બાજુવાળા ચોરસમાંથી પસાર થતું ફલક્સ કેટલા .......$Nm^2/C$ હશે ? તેનો સ્પર્શક $X$ અક્ષ સાથે $60^°$ ખૂણો બનાવે છે.
આપેલ વિસ્તારમાં વિદ્યુતક્ષેત્ર $\overrightarrow{ E }=\left(\frac{3}{5} E _{0} \hat{i}+\frac{4}{5} E _{0} \hat{j}\right) \frac{ N }{ C }$ વડે આપવામાં આવે છે. $(y-z$ સમતલને સમાંતર) $0.2 \,m^ 2$ ક્ષેત્રફળ ધરાવતી અને $(x-y$ સમતલને સમાંતર) $0.3 \,m^2$ ક્ષેત્રફળ ધરાવતી લંબચોરસ સપાટીમાંથી બતાવેલ ક્ષેત્ર પસાર થતાં મળતા ફ્લક્સનો ગુણોત્તર $a:b$ છે, જ્યાં $a=...........$ છે.
[ અત્રે $\hat{i}, \hat{j}$ અને $\hat{k}$ એ અનુક્રમે $x, y$ અને $z-$ અક્ષોની દિશામાં એકમ સદિશ છે.]
આકૃતિમાં દર્શાવ્યા મુજબ $'q'$ વિજભાર ને સમઘનનાં એક ખૂણા પર ગોઠવવામાં આવ્યો છે. આચ્છાદિત ક્ષેત્રફળમાંથી પસાર થતાં સ્થિત વીજ ક્ષેત્ર $\overrightarrow{ E }$ નું ફ્લક્સ ...... હશે.
વિધુત ફલક્સની સમજૂતી આપો.