अनन्त गुणोत्तर श्रेणी का प्रथम पद $x$ और उसका योग $5$ है, तब
$0 \le x \le 10$
$0 < x < 10$
$ - 10 < x < 0$
$x > 10$
यदि $\frac{{x + y}}{2},\;y,\;\frac{{y + z}}{2}$ हरात्मक श्रेणी में हों, तो $x,\;y,\;z$ होंगे
यदि किसी गुणोत्तर श्रेणी का $p$ वाँ, $q$ वाँ तथा $r$ वाँ पद क्रमश : $a, b$ तथा $c$ हो, तो सिद्ध कीजिए
कि $a^{q-r} b^{r-p} c^{P-q}=1$
अनुक्रम $\sqrt 2 ,\;\sqrt {10} ,\;5\sqrt 2 ,\;.......$ का $7$ वाँ पद है
यदि $a,\;b,\;c$ समान्तर श्रेणी में हों, तब ${3^a},\;{3^b},\;{3^c}$ होंगे
कार्तीय तल में $C_1, C_2, \ldots, C_n$, जहां $n \geq 3$, नामक वृत्त दिये गये हैं जिनकी त्रिज्या क्रमानुसार $r_1, r_2, \ldots, r_n$ है। प्रत्येक $i$, $1 \leq i \leq n-1$ के लिए, वृत्त $C_i$ तथा $C_{i+1}$ एक दूसरे को बाह्य रूप से छूते हैं। यदि $x$-अक्ष तथा रेखा $y=2 \sqrt{2} x+10$ दोनों ही दिये गए सारे वृत्तों की स्पर्श रेखाएँ है तो क्रमानुसार सूची $r_1, r_2, \ldots, r_n$