Let $a_1, a_2, a_3 \ldots$ be in an $A.P.$ such that $\sum_{ k =1}^{12} a _{2 k -1}=-\frac{72}{5} a _1, a _1 \neq 0$. If $\sum_{ k =1}^{ n } a _{ k }=0$, then $n$ is:

  • [JEE MAIN 2025]
  • A
    $11$
  • B
    $10$
  • C
    $18$
  • D
    $17$

Similar Questions

Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :

  • [JEE MAIN 2021]

Let $a _1, a _2, \ldots, a _{2024}$ be an Arithmetic Progression such that $a _1+\left( a _5+ a _{10}+ a _{15}+\ldots+ a _{2020}\right)+ a _{2024}= 2233$. Then $a_1+a_2+a_3+\ldots+a_{2024}$ is equal to ________

  • [JEE MAIN 2025]

The sum of $24$ terms of the following series $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ is

If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be

The $8^{\text {th }}$ common term of the series $S _1=3+7+11+15+19+\ldots . .$ ; $S _2=1+6+11+16+21+\ldots .$ is $.......$.

  • [JEE MAIN 2023]