The extension in a string, obeying Hooke's law, is $x$. The speed of sound in the stretched string is $v$. If the extension in the string is increased to $1.5x$, the speed of sound will be

  • A

    $1.22\, v$

  • B

    $0.61\, v$

  • C

    $1.50\, v$

  • D

    $0.75\, v$

Similar Questions

Spacing between two successive nodes in a standing wave on a string is $x$ . If frequency of the standing wave is kept unchanged but tension in the string is doubled, then new spacing between successive nodes will  become

A rope of length $L$ and uniform linear density is hanging from the ceiling. A transverse wave pulse, generated close to the free end of the rope, travels upwards through the rope. Select the correct option.

  • [KVPY 2019]

The percentage increase in the speed of transverse waves produced in a stretched string if the tension is increased by $4\, \%$, will be ......... $\%$

  • [JEE MAIN 2021]

A wire of $9.8 \times {10^{ - 3}}kg{m^{ - 1}}$ passes over a frictionless light pulley fixed on the top of a frictionless inclined plane which makes an angle of $30°$ with the horizontal. Masses $m$ and $M$ are tied at the two ends of wire such that $m$ rests on the plane and $M$ hangs freely vertically downwards. The entire system is in equilibrium and a transverse wave propagates along the wire with a velocity of $100 ms^{-1}$. Chose the correct option $m =$ ..... $kg$

In the figure shown a mass $1\  kg$ is connected to a string of mass per unit length $1.2\  gm/m$ . Length of string is $1\  m$ and its other end is connected to the top of a ceiling which is accelerating up with an acceleration $2\  m/s^2$ . A transverse pulse is produced at the lowest point of string. Time taken by pulse to reach the top of string is .... $s$