In the figure shown a mass $1\ kg$ is connected to a string of mass per unit length $1.2\ gm/m$ . Length of string is $1\ m$ and its other end is connected to the top of a ceiling which is accelerating up with an acceleration $2\ m/s^2$ . A transverse pulse is produced at the lowest point of string. Time taken by pulse to reach the top of string is .... $s$
$0.1$
$0.01$
$0.05$
$0.5$
Speed of a transverse wave on a straight wire (mass $6.0\; \mathrm{g}$, length $60\; \mathrm{cm}$ and area of cross-section $1.0\; \mathrm{mm}^{2}$ ) is $90\; \mathrm{ms}^{-1} .$ If the Young's modulus of wire is $16 \times 10^{11}\; \mathrm{Nm}^{-2},$ the extension of wire over its natural length is
A string of mass $m$ and length $l$ hangs from ceiling as shown in the figure. Wave in string moves upward. $v_A$ and $v_B$ are the speeds of wave at $A$ and $B$ respectively. Then $v_B$ is
Figure here shows an incident pulse $P$ reflected from a rigid support. Which one of $A, B, C, D$ represents the reflected pulse correctly
A $20 \mathrm{~cm}$ long string, having a mass of $1.0 \mathrm{~g}$, is fixed at both the ends. The tension in the string is $0.5 \mathrm{~N}$. The string is set into vibrations using an external vibrator of frequency $100 \mathrm{~Hz}$. Find the separation (in $cm$) between the successive nodes on the string.
$Assertion :$ Two waves moving in a uniform string having uniform tension cannot have different velocities.
$Reason :$ Elastic and inertial properties of string are same for all waves in same string. Moreover speed of wave in a string depends on its elastic and inertial properties only.