A rope of length $L$ and uniform linear density is hanging from the ceiling. A transverse wave pulse, generated close to the free end of the rope, travels upwards through the rope. Select the correct option.
The speed of the pulse decreases as it moves up.
The time taken by the pulse to travel the length of the rope is proportional to $\sqrt{L}$.
The tension will be constant along the length of the rope.
The speed of the pulse will be constant along the length of the rope.
Equation of travelling wave on a stretched string of linear density $5\,g/m$ is $y = 0.03\,sin\,(450\,t -9x)$ where distance and time are measured in $SI$ united. The tension in the string is ... $N$
A wire of density $9 \times 10^{-3} \,kg\, cm ^{-3}$ is stretched between two clamps $1\, m$ apart. The resulting strain in the wire is $4.9 \times 10^{-4}$. The lowest frequency of the transverse vibrations in the wire is......$HZ$
(Young's modulus of wire $Y =9 \times 10^{10}\, Nm ^{-2}$ ), (to the nearest integer),
A transverse wave propagating on the string can be described by the equation $y=2 \sin (10 x+300 t)$. where $x$ and $y$ are in metres and $t$ in second. If the vibrating string has linear density of $0.6 \times 10^{-3} \,g / cm$, then the tension in the string is .............. $N$
One end of a long string of linear mass density $8.0 \times 10^{-3}\;kg m ^{-1}$ is connected to an electrically driven tuning fork of frequency $256\; Hz$. The other end passes over a pulley and is tied to a pan containing a mass of $90 \;kg$. The pulley end absorbs all the incoming energy so that reflected waves at this end have negligible amplitude. At $t=0,$ the left end (fork end) of the string $x=0$ has zero transverse displacement $(y=0)$ and is moving along positive $y$ -direction. The amplitude of the wave is $5.0\; cm .$ Write down the transverse displacement $y$ as function of $x$ and $t$ that describes the wave on the string.
A transverse wave is passing through a string shown in figure. Mass density of the string is $1 \ kg/m^3$ and cross section area of string is $0.01\ m^2.$ Equation of wave in string is $y = 2sin (20t - 10x).$ The hanging mass is (in $kg$):-